Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Abstract Gamma-ray binaries are luminous in gamma rays, composed of a compact object orbiting a massive companion star. The interaction between these two objects can drive relativistic outflows, either jets or winds, in which particles can be accelerated to energies reaching hundreds of teraelectronvolts (TeV). However, it is still debated where and under which physical conditions particles are accelerated in these objects and ultimately whether protons can be accelerated up to PeV energies. Among the well-known gamma-ray binaries, LS 5039 is a high-mass X-ray binary with an orbital period of 3.9 days that has been observed up to TeV energies by the High Energy Stereoscopic System. We present new observations of LS 5039 obtained with the High Altitude Water Cherenkov (HAWC) observatory. Our data reveal that the gamma-ray spectrum of LS 5039 extends up to 200 TeV with no apparent spectral cutoff. Furthermore, we confirm, with a confidence level of 4.7σ, that the emission between 2 and 118 TeV is modulated by the orbital motion of the system, and find a 2.2σhint of variability above 100 TeV. This indicates that these photons are likely produced within or near the binary orbit, where they can undergo absorption by the stellar photons. In a leptonic scenario, the highest energy photons detected by HAWC can be emitted by ∼200 TeV electrons inverse Compton scattering stellar photons, which would require an extremely efficient acceleration mechanism operating within LS 5039. Alternatively, a hadronic scenario could explain the data through proton–proton or proton–gamma collisions of protons accelerated to petaelectronvolt energies.more » « lessFree, publicly-accessible full text available July 10, 2026
-
Time-gated Sc K-shell and Ge L-shell spectra are presented from a range of characterized thermodynamic states spanning ion densities of 1019–1020cm−3 and plasma temperatures around 2000 eV. For the higher densities studied and temperatures from 1000 to 3000 eV, the Sc and Ge x-ray emission spectra are consistent with steady-state calculations from the modern atomic kinetics model SCRAM. At the lower ion densities achieved through plasma expansion, however, the model calculations require a higher plasma temperature to reproduce the observed Ge spectrum. We attribute this to ionization disequilibrium of the Sc because the ionization time scales exceed the hydrodynamic timescale when the inferred temperatures diverge.more » « less
-
Abstract The HAWC Observatory collected 6 yr of extensive data, providing an ideal platform for long-term monitoring of blazars in the very high energy (VHE) band, without bias toward specific flux states. HAWC continuously monitors blazar activity at TeV energies, focusing on sources with a redshift ofz≤ 0.3, based on the Third Fermi-LAT Catalog of High-Energy sources. We specifically focused our analysis on Mrk 421 and Mrk 501, as they are the brightest blazars observed by the HAWC Observatory. With a data set of 2143 days, this work significantly extends the monitoring previously published, which was based on 511 days of observation. By utilizing HAWC data for the VHEγ-ray emission in the 300 GeV–100 TeV energy range, in conjunction with Swift-XRT data for the 0.3–10 keV X-ray emission, we aim to explore potential correlations between these two bands. For Mrk 501, we found evidence of a long-term correlation. Additionally, we identified a period in the light curve where the flux was very low for more than 2 yr. On the other hand, our analysis of Mrk 421 measured a strong linear correlation for quasi-simultaneous observations collected by HAWC and Swift-XRT. This result is consistent with a linear dependence and a multiple-zone synchrotron self-Compton model to explain the X-ray andγ-ray emission. Finally, as suggested by previous findings, we confirm a harder-when-brighter behavior in the spectral evolution of the flux properties for Mrk 421. These findings contribute to the understanding of blazar emissions and their underlying mechanisms.more » « lessFree, publicly-accessible full text available February 5, 2026
-
Abstract The first TeVγ-ray source with no lower energy counterparts, TeV J2032+4130, was discovered by HEGRA. It appears in the third HAWC catalog as 3HWC J2031+415 and it is a bright TeVγ-ray source whose emission has previously been resolved as two sources: HAWC J2031+415 and HAWC J2030+409. While HAWC J2030+409 has since been associated with the Fermi Large Area Telescope Cygnus Cocoon, no such association for HAWC J2031+415 has yet been found. In this work, we investigate the spectrum and energy-dependent morphology of HAWC J2031+415. We associate HAWC J2031+415 with aγ-ray binary system containing the pulsar PSR J2032+4127 and its companion MT91 213. We study HAWC data to observe their periastron in 2017. Additionally, we perform a combined multiwavelength analysis using radio, X-ray, andγ-ray emission. We conclude that HAWC J2031+415 and, by extension, TeV J2032+4130 are most probably a pulsar wind nebula powered by PSR J2032+4127.more » « less
-
Abstract Very-high-energy (0.1–100 TeV) gamma-ray emissions were observed in High-Altitude Water Cherenkov (HAWC) data from the lobes of the microquasar SS 433, making them the first set of astrophysical jets that were resolved at TeV energies. In this work, we update the analysis of SS 433 using 2565 days of data from the HAWC observatory. Our analysis reports the detection of a point-like source in the east lobe at a significance of 6.6σand in the west lobe at a significance of 8.2σ. For each jet lobe, we localize the gamma-ray emission and identify a best-fit position. The locations are close to the X-ray emission sites “e1” and “w1” for the east and west lobes, respectively. We analyze the spectral energy distributions and find that the energy spectra of the lobes are consistent with a simple power lawdN/dE∝Eαwith and for the east and west lobes, respectively. The maximum energy of photons from the east and west lobes reaches 56 TeV and 123 TeV, respectively. We compare our observations to various models and conclude that the very-high-energy gamma-ray emission can be produced by a population of electrons that were efficiently accelerated.more » « less
-
Today’s STEM classrooms have expanded the domain of computer science education from a basic two-toned terminal screen to now include helpful Integrated Development Environments(IDE) (BlueJ, Eclipse), block-based programming (MIT Scratch, Greenfoot), and even physical computing with embedded systems (Arduino, LEGO Mindstorm). But no matter which environment a student starts programming in, all students will eventually need help in finding and fixing bugs in their code. While the helpful IDE’s have debugger tools built in (breakpoints for pausing your program, ways to view/modify variable values, and "stepping" through code execution), in many of the other programming environments, students are limited to using print statements to try and "see" what is happening inside their program. Most students who learn to write code for Arduino microcontrollers will start within the Arduino IDE, but the official Arduino IDE does not currently provide any debugging tools. Instead, a student would have to move on to a professional IDE such as Atmel Studio or acquire a hardware debugger in order to add breakpoints or view their program’s variables. But each of these options has a steep learning curve, additional costs, and can require complex configurations. Based on research of student debugging practices[3, 7] and our own classroom observations, we have developed an Arduino software library, called Arduino Debugger, which provides some of these debugging tools (ex. breakpoints) while staying within the official Arduino IDE. This work continues a previous library, (redacted), which focused on features specific to e-textiles development boards. The Arduino Debugger library has been modified to support not only e-textile boards (Lilypad, Adafruit Circuit Playground) but most AVR and ARM based Arduino boards.We are also in the process of testing a set of Debugging Code Templates to see how they might increase student adoption of debugging tools.more » « less
-
The e-textile landscape has enabled creators to combine textile materiality with electronic capability. However, the tools that e-textile creators use have been adapted from traditional textile or hardware tools. This puts creators at a disadvantage, as e-textile projects present new and unique challenges that currently can only be addressed using a non-specialized toolset. This paper introduces the first iteration of a wearable e-textile debugging tool to assist novice engineers in problem solving e-textile circuitry errors. These errors are often only detected after the project is fully built and are resolved only by disassembling the circuit. Our tool actively monitors the continuity of the conductive thread as the user stitches, which enables the user to identify and correct circuitry errors as they create their project.more » « less
An official website of the United States government

Full Text Available